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Wronski Brackets and the Ferris Wheel

Keye Martin1

We connect the Bayesian order on classical states to a certain Lie algebra on C∞[0, 1].
This special Lie algebra structure, made precise by an idea we introduce called a Wronski
bracket, suggests new phenomena the Bayesian order naturally models. We then study
Wronski brackets on associative algebras, and in the commutative case, discover the
beautiful result that they are equivalent to derivations.
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1. INTRODUCTION

In Coecke and Martin (2002), a partial order on classical states �n was
introduced called the Bayesian order. The Bayesian order has the seemingly rare
property that it extends to quantum states �n in such a way that several traits
desirable to computer scientists and physicists alike are preserved. One of these
is that the classical and quantum logics of Birkhoff and von Neumann arise as the
set of irreducible elements of �n and �n, respectively.

In this paper, we characterize the Bayesian order in a manner reminiscent of
causal relations in relativity: by saying that two states compare iff they are joined
by a certain type of curve. The type of the curve is expressed using a new idea
called a Wronski bracket. Wronski brackets are special types of Lie brackets that
do not appear to have been studied before. The definitive property of a Wronski
bracket on a commutative algebra A is that

[ax, by] = (ab)[x, y] + [a, b](xy)

for all a, b, x, y ∈ A, which turns out to be a stronger form of the Jacobi identity.
From an algebraic viewpoint this is interesting because we carry two distinct
multiplications, and our axiom serves to relate them. Wronski brackets have many
important uses in physics and mathematics, and one of the major results of this
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paper is that Wronski brackets on commutative algebras with identity are in
1–1 correspondence with derivations (i.e., on smooth manifolds derivations are
equivalent to vector fields).

Wronski brackets arise in so many different contexts that by combining
them in a meaningful way we discover new phenomena naturally modeled by
the Bayesian order. One of these, the postdoc ferris wheel, teaches us what the
quintessential monotone process in the Bayesian order is like. Due to space limita-
tions, some proofs are given in the report (Martin, 2004). Lemma 4 and all results
after that are new.

2. DIFFERENTIABLE CURVES

For an integer n ≥ 2, the classical states are

�n :=
{

x ∈ [0, 1]n :
n∑

i=1

xi = 1

}
.

A classical state x ∈ �n is pure when xi = 1 for some i ∈ {1, . . . , n}; we denote
such a state by ei . States that are not pure are called mixed. If we know x and by
some means determine outcome i is not possible, our knowledge improves to

pi(x) = 1

1 − xi

(x1, . . . , x̂i , . . . , xn+1) ∈ �n,

where pi(x) is obtained by first removing xi from x and then renormalizing. The
partial mappings which result, pi : �n+1 ⇀ �n with dom(pi) = �n+1 \ {ei}, are
called the Bayesian projections and lead one to the following relation on classical
states.

Definition 2.1. For x, y ∈ �n+1,

x � y ≡ (∀i)(x, y ∈ dom(pi) ⇒ pi(x) � pi(y)).

For x, y ∈ �2,

x � y ≡ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) .

The relation � on �n is called the Bayesian order.
The Bayesian order was introduced in Coecke and Martin (2002) where the fol-
lowing is proven.

Theorem 2.2. (�n,�) is a domain with least element ⊥ := (1/n, . . . , 1/n) and
max(�n) = {ei : 1 ≤ i ≤ n}.

A domain is a partially ordered set with intrinsic notions of completeness
and approximation. The exact definition is given in Coecke and Martin (2004).
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The equality max(�n) = {ei : 1 ≤ i ≤ n} follows from two crucial aspects of the
Bayesian order: (i) x � y ⇒ (∃i) xi = x+ & yi = y+ and (ii) x � ei ⇔ xi = x+,
where we set x+ = max{xi : 1 ≤ i ≤ n} for x ∈ �n.

The Bayesian order has a more direct description: The symmetric formulation
of Coecke and Martin (2002). Let S(n) denote the group of permutations on
{1, . . . , n} and

�n := {x ∈ �n : (∀i < n) xi ≥ xi+1}
denote the collection of monotone decreasing classical states.

Theorem 2.3. For x, y ∈ �n, we have x � y iff there is a permutation σ ∈ S(n)
such that x · σ, y · σ ∈ �n and

(x · σ )i(y · σ )i+1 ≤ (x · σ )i+1(y · σ )i

for all i with 1 ≤ i < n.

Thus, (�n,�) can be thought of as n! many copies of the do-
main (�n,�) identified along their common boundaries, where (�n,�) is
x � y ≡ (∀i < n) xiyi+1 ≤ xi+1yi. It should be remarked though that the prob-
lems of ordering �n and �n are very different, with the latter being far more
challenging if one also wants to consider quantum mixed states.

Our first observation is that movement in the Bayesian order implies dif-
ferentiability (a.e.). A curve π : [0, 1] → �n can be written as π = (π1, . . . , πn)
where the functions πi : [0, 1] → [0, 1] satisfy πi ≥ πi+1 for i < n and

n∑
i=1

πi(t) = 1

for all t ∈ [0, 1].

Lemma 2.4. If x � y in �n, then

k∑
i=1

xi ≤
k∑

i=1

yi

for all 1 ≤ k ≤ n. The converse is false.

Proof: Because x � y in �n, there is an integer 1 < m ≤ n such that xi ≤ yi

for i < m and xi ≥ yi for i ≥ m. Then for k < m the claim is obvious, while for
k ≥ m we have

k∑
i=1

xi = 1 −
n∑

i=k+1

xi ≤ 1 −
n∑

i=k+1

yi =
k∑

i=1

yi,

using xi ≥ yi for i ≥ m. �
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The property of the Bayesian order in Lemma 2.4 defines an order ≤ on �n

in its own right,

x ≤ y ≡ (∀k ∈ {1, . . . , n})
k∑

i=1

xi ≤
k∑

i=1

yi

called Majorization (Alberti and Uhlmann, 1982; Marshall and Olkin, 1979;
Muirhead, 1903). It too yields a domain (�n,≤) as noted in (Martin, 2003);
however, it has no natural extension to all of �n. Despite this sharp dif-
ference, an increasing curve in either order has a decent amount of analytic
structure.

Proposition 2.5. If π = (π1, . . . , πn) : [0, 1] → (�n,≤) is an increasing curve,
then each πi is of bounded variation. Thus,

(i) the curve π has a ‘length’;
(ii) it is continuous except on a countable set;

(iii) it is differentiable except on a set of measure zero.

Proof: Define fk : [0, 1] → [0, 1] by

fk(t) =
k∑

i=1

πi(t)

for k ≥ 0. By the definition of ≤, the fk are monotone increasing functions, where
we note that fk = 0 for k = 0. Since πi = fi − fi−1, the map πi is the difference
of monotone increasing maps and thus of bounded variation. This establishes (i),
(ii), and (iii). �

From the qualitative follows differentiability. We study differentiable curves,
which as we shall see, will take us naturally to the Wronski bracket.

3. THE WRONSKI BRACKET

Let X denote the set of differentiable real valued functions defined on [0, 1].
For x, y ∈ X,

[x, y] := ẋy − ẏx.

This is called the Wronski bracket.
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Lemma 3.1. Let x, y, z ∈ X. Then

(i) y[x, z] = z[x, y] + x[y, z],
(ii) ẏ[x, z] = ż[x, y] + ẋ[y, z],

(iii) y ˙[x, z] = z ˙[x, y] + x ˙[y, z].

In addition, [x, 1] = ẋ.

Proof: (iii) Use the identity ˙[x, y] = ẍy − ÿx. �

The perfection of form noted in the last lemma suggests that X with [ , ] has
more structure than the usual Lie algebra. Nevertheless:

Lemma 3.2. [ , ] is a Lie bracket.

(i) [ , ] is bilinear,
(ii) [x, y] = −[y, x],

(iii) The Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

holds.

Thus, the smooth maps in X with [·, ·] form a Lie algebra.

Proof: (iii) What is beautiful here is that the Jacobi identity follows from (ii)
and (iii) of Lemma 3.1. �

The next result shows that there is a relationship between the standard order
on curves and the Wronski bracket.

Proposition 3.3. Let f, g, h : [0, 1] → [0,∞) be differentiable maps with f ≥
g ≥ h.

(i) If [f, g] ≥ 0 and [g, h] ≥ 0, then [f, h] ≥ 0.
(ii) If [f, g] = 0 and [g, h] = 0, then [f, h] = 0.

Proof: (i) Let s ∈ [0, 1]. If g(s) > 0, then the equation

g[f, h] = h[f, g] + f [g, h]

of Lemma 3.1(i) applies, which immediately yields [f, h](s) ≥ 0. Thus, we need
only verify the assertion for g(s) = 0.

But if g(s) = 0, then we must also have h(s) = 0. For s ∈ (0, 1), we have
ḣ(s) = 0, which immediately gives [f, h](s) = 0. Likewise, f (s) = 0 also gives
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[f, h](s) = 0, so we may assume that (i) s ∈ {0, 1}, (ii) f (s) > 0, and (iii) g(s) =
h(s) = 0. If s = 1, then

ḣ(s) = lim
t→1−

h(t)

t − 1
≤ 0,

so [f, h](s) = −ḣ(s)f (s) ≥ 0. If s = 0, then ḣ(s) ≥ 0. Since g(s) = 0,
[f, g](s) = −ġ(s)f (s) ≥ 0, so f (s) > 0 yields ġ(s) ≤ 0. But g ≥ h gives

ḣ(s) = lim
t→0+

h(t)

t
≤ lim

t→0+

g(t)

t
= ġ(s) ≤ 0,

and hence ḣ(s) = 0. Then [f, h](s) = 0, which finishes the proof.
(ii) Applying (i) to f ≥ g ≥ h shows [f, h] ≥ 0. But we can also apply (i)

to f ≥ g ≥ g − h since [g, g − h] = 0, which gives

[f, g − h] ≥ 0

and that is exactly [f, h] ≤ 0. �

The Wronski bracket [x, y] = ẋy − ẏx determines when two solutions of
a second order equation are independent, the area swept out by a curve in the
plane, angular momentum in mechanics, its sign classifies the direction of motion
as being either clockwise or counterclockwise, and it arises in model theory as
the only known example of a ‘stable’ infinite dimensional Lie algebra. It is also
intimately connected to the Bayesian order.

Theorem 3.3. A differentiable curve π = (π1, . . . , πn) : [0, 1] → (�n,�) is in-
creasing iff [πi, πi+1] ≥ 0 for all i < n.

Proof: (i) ⇒ (ii): To prove [πi, πi+1](s) ≥ 0, we can assume πi(s) > 0 (other-
wise, we trivially have [πi, πi+1](s) = 0). By the continuity of πi , there must be
an open interval (a, b) ⊆ R containing s such that πi > 0 on U := (a, b) ∩ [0, 1].
By the monotonicity of π , the map πi+1/πi is monotone decreasing on U . Since
it is also differentiable, its derivative cannot be positive. But

˙(
πi+1

πi

)
= [πi+1, πi]

π2
i

≤ 0,

which makes it clear that [πi, πi+1] = −[πi+1, πi] ≥ 0.
(ii) ⇒ (i): We need to show that

πi(s)πi+1(t) ≤ πi+1(s)πi(t)

whenever s ≤ t and 1 ≤ i < n. We can assume s < t . In the simple case, πi > 0
on [s, t], and then as before

˙(
πi+1

πi

)
= [πi+1, πi]

π2
i

= − [πi, πi+1]

π2
i

≤ 0
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which means that πi+1/πi is monotone decreasing on [s, t]. In particular,
(πi+1/πi)(s) ≥ (πi+1/πi)(t), which finishes this case.

Suppose now that πi(c) = 0 for some c ∈ [s, t]. We claim that πi(t) = 0.
For the proof, a simple induction based on Proposition 3.3 gives [πi, πj ] ≥ 0 for
1 ≤ i ≤ j ≤ n. This means that fk : [0, 1] → [0, 1] given by

fk =
k∑

i=1

πi

is monotone increasing since

ḟk = [fk, 1] =
[
fk, fk +

∑
j>k

πj

]
= 0 +

∑
j>k

[fk, πj ] =
∑
j>k

k∑
i=1

[πi, πj ] ≥ 0.

Because π (c) is a monotone state, πi(c) = 0 implies that fi(c) = 1. But if πi(t) >

0, then the monotonicity of fi gives 1 = fi(c) < fi(t), which contradicts the fact
that π (t) is a classical state. Then πi(t) = 0, so πi ≥ πi+1 gives πi+1(t) = 0, which
proves the desired inequality holds. �

The previously mentioned uses of the Wronski bracket provide many new
ways to explain the Bayesian order. We can also characterize it in analytic
terms.

Corollary 3.5. For x, y ∈ �n, x � y iff there is a differentiable curve
π : [0, 1] → �n from x = π (0) to y = π (1) with [πi, πi+1] ≥ 0 for
all i < n.

Proof: Given x � y, let π : [0, 1] → �n be the straight line path from x to y.
The other direction follows from the last theorem. �

An interesting point is that for a differentiable curve π : [0, 1] →
�n, we have [πi, πj ] constant for all 1 ≤ i, j ≤ n iff π (t) = (1 − t) ·
π (0) + t · π (1). Finally, all results in this section apply equally well to
curves π : [a, b] → �n. We simply took a = 0 and b = 1 because we like
them.

4. THE POSTDOC FERRIS WHEEL

The connection between the Bayesian order and the Wronski bracket suggests
the quintessential example of a monotone process. Imagine four postdocs on a
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ferris wheel at the start of a new revolution:

�

A(t)

�
1

�
�
�
�
�
�
�
�
�
� �

2

�
3

�
4

The question we want to ask is

What is the probability that postdoc i wins?

where by ‘wins’ we mean that postdoc i completes the revolution before all others.
This seems like a strange and uninteresting question until we learn more about the
postdocs:

Postdoc 1: Believes there’s only one place to go from the top.
Postdoc 2: Just wants to enjoy the ride while it lasts.
Postdoc 3: Thinks that every revolution needs at least one martyr.
Postdoc 4: His funding was just renewed for two more months—wow!

So for various reasons, it is possible that some of the postdocs may jump from the
ferris wheel before the current revolution is completed. How then can we calculate
the probability that postdoc i wins?

First, let us calculate the probability that one of them jumps. The only in-
formation we have is that based on observation (literally “watching” the wheel
move), so the probability that i jumps is determined by the percentage of total
area swept out by the line joining the origin to i:

P (i jumps)(t) = 1 − ai(t) := 1 − A(t − (i − 1)ε)

A

where A is the total area swept out by one revolution of the wheel, A(t) is the area
swept out by postdoc 1 after t units,

A(t) = 1

2

∫ t

0
[y, x] ds,

and the coordinates of postdoc 1 are (x(t), y(t)). Notice that we take the coordinates
of postdoc i to be (x(t − (i − 1)ε), y(t − (i − 1)ε)) where 0 < ε < 1 is a constant.
Using that the probability of Y given X is

P (Y | X) = P (Y&X)

P (X)
,
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we get

P (i wins) = P (i does not jump & all j jump for j < i)

= P (i does not jump | all j < i jump) · P (all j < i jump)

= ai · P (all j < i jump)

= ai ·
i−1∏
j=1

(1 − aj )

assuming for the last equality that the postdocs jump independent of one another.
These probabilities, when normalized by P := �P (i wins), define a curve π into
�4 given by πi = P (i wins)/P . After enough time elapses, π is monotone!

To see this, suppose that the coordinates of postdoc 1 have been parameterized
over [0, 1] as

x(t) = r cos(2πt) : y(t) = r sin(2πt)

where r is the radius of the ferris wheel. Then π is now defined on [3ε, 1].

Lemma 4.1. The curve π is monotone increasing on [2ε + √
ε, 1].

Proof: Using the identity [ax, ay] = a2[x, y], bilinearity and Theorem 3, π will
be monotone if [ai, ai+1] + a2

i ȧi+1 ≥ 0 for all i. Since each ai is a translation of
a1, we first consider the case i = 1. We get

a1(t) = t, a2(t) = t − ε, A = πr2

so [a1, a2] + a2
1 ȧ2 ≥ 0 iff t ≥ √

ε. Applying this result to ai and ai+1, we
get [ai, ai+1] + a2

i ȧi+1 ≥ 0 iff t ≥ (i − 1)ε + √
ε. Setting i = 3 finishes the

proof. �

Now suppose the wheel is turning when at some point t ∈ [2ε + √
ε, 1],

postdoc i jumps. At this instant, our knowledge of who will win becomes

pi ◦ π : [t, 1] → �3

where

pi(x) = 1

1 − xi

(x1, . . . , x̂i , . . . , x4) ∈ �3

is a Bayesian projection that first removes xi from x and then renormalizes. This
new curve pi ◦ π is also monotone increasing because π is monotone increasing
in the Bayesian order. Why does not π increase over the entire interval [3ε, 1]?

We do not experience an increase in information until t = 2ε + √
ε, which

means that if you were watching the ferris wheel, then from the moment that
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postdoc 4 crossed the x-axis (t = 3ε), you would have to wait

(2ε + √
ε) − 3ε = √

ε − ε

units of time until you experienced an increase of information (according to the
Bayesian order). This it seems should be regarded as “the amount of time required
for information to be converted into credible belief,” on the grounds that it takes
time for credible belief to be established.

Another example in the same spirit as the ferris wheel would be the state of
a queue of processes waiting to exploit some resource. At any moment, a process
may get tired of waiting and elect to remove itself from the queue. For instance, if a
number of users are waiting to download a large file. What is important, though, is
to specify that a user has no knowledge of their position in the queue—otherwise,
taking the probabilities for jumping to be independent may not make much sense.

The Wronski bracket arises in many different contexts and combining these
(conservation of angular momentum, the Bayesian order) has led to new phenom-
ena modeled by the Bayesian order, such as a ferris wheel of maladjusted postdocs,
or a queue of impatient processes. What we want to do now is identify some prop-
erty it has that can help explain why it is so ‘special’. In proving Lemma 4.1, we
encounter a formula which provides a hint:

[ax, ay] = a2[x, y].

Pragmatically, this tells us that renormalization does not affect monotonicity in
the Bayesian order. This is a special case of a more general property

[ax, by] = (ab)[x, y] + [a, b](xy)

which serves to characterize the Wronski bracket.

5. WRONSKI BRACKETS AND DERIVATIONS

An algebra over the field of real numbers is a real vector space (A,+) with
a bilinear multiplication · : A2 → A. An algebra is associative if · is associative,
commutative if · is commutative and has an identity if · has an identity. Let A be
an associative algebra with identity. Its commutator is

〈x, y〉 := xy − yx

for x, y ∈ A. Here is one way to define Wronski brackets on arbitrary associative
algebras with identity.

Definition 5.1. A Wronski bracket is an antisymmetric bilinear map
[ , ] : A2 → A such that

[ax, by] = (ab)[x, y] + [a, b](xy) + a〈b, x〉[y, 1] + [1, a]〈b, x〉y
for all a, b, x, y ∈ A.
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An equivalent definition is to replace antisymmetry above by the axiom
[x, 1] + [1, x] = 0.

Definition 5.2. A derivation is a linear map d : A → A such that

d(xy) = dx · y + x · dy

for all x, y ∈ A.

Proposition 5.3. For each derivation d with 〈dx, y〉 = 〈x, dy〉,
[x, y] := dx · y − x · dy

is a Wronski Bracket.

Proposition 5.4. For each Wronski bracket [ , ]

dx := [x, 1]

is a derivation with 〈dx, y〉 = 〈x, dy〉 and

[x, y] = dx · y − x · dy

for all x, y ∈ A.

So there is a map from derivations to Wronski brackets d �→ [ , ]d and another
from Wronski brackets to derivations [ , ] �→ d[ , ] .

Theorem 5.5. There is a one-to-one correspondence between Wronski brackets
and derivations d : A → A that satisfy 〈dx, y〉 = 〈x, dy〉.

For the case we are most interested in, let A be a commutative algebra
with identity. Because the commutator is now identically zero, the axiom for the
Wronski bracket simplifies to

[ax, by] = (ab)[x, y] + [a, b](xy)

and 〈dx, y〉 = 〈x, dy〉 holds for all derivations d : A → A. The axiom for Wronski
brackets can be used to derive the equations shown valid in the case A = C∞[0, 1],
including the Jacobi identity.

Definition 5.6. A Lie bracket is a bilinear, antisymmetric [ , ] : A2 → A with

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ A.
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Given a Wronski bracket [ , ] on A, we write

ẋ := [x, 1]

for its associated derivation. Then

[x, y] = ẋy − xẏ

for all x, y ∈ A.

Proposition 5.7. A Wronski bracket [ , ] satisfies

(i) y[x, z] = z[x, y] + x[y, z],
(ii) ẏ[x, z] = ż[x, y] + ẋ[y, z],

(iii) y ˙[x, z] = z ˙[x, y] + x ˙[y, z].

Thus, a Wronski bracket is a Lie bracket.

An important point: It was never clear before why the Lie structure of the
Wronski bracket mattered. From the present point of view, the Jacobi identity is
a generalization of the Leibniz identity (the product rule for derivatives). To the
best of our knowledge, this connection between the two has not been made.

Example 5.8. (Vector fields) If M is a smooth manifold, a vector field is a
derivation on the algebra of smooth real-valued functions C∞(M). Thus, Wronski
brackets on C∞(M) are precisely vector fields.

A natural question is whether there is a connection between Wronski brackets
and the crucial Poisson brackets: Lie brackets [, ] with the property that each [x, ·]
defines a derivation, for x ∈ A. The Wronski bracket [x, y] = ẋy − xẏ is not a
Poisson bracket. Whether there is some other way of relating the two ideas, we do
not know (but would be very interested in hearing from someone who does know).

6. AN ALGEBRAIC FORMULATION OF MONOTONE PROCESS

It may seem that we have wandered off course pretty far from the domain of
classical states, so we should point out before ending that the extra structure in an
algebra combined with what we have learned about Wronski brackets allows one
to adopt an abstract view of the Bayesian order that may be applicable in other
settings. First, if A is an algebra, we can define the spectrum of x ∈ A to be

σx := {α ∈ R : x − α · 1 has no multiplicative inverse}
and then say x ≥ 0 iff σx ⊆ [0,∞). Using this, we can define a relation

x ≤ y ≡ (y − x) ≥ 0.
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In the case A = C∞(M), we will get σx = x(M), and ≤ is the usual pointwise
order on functions. Given a commutative algebra A and a derivation d : A → A,
we take ≤ and call a vector v ∈ An with vi ≥ vi+1 monotone if

(∀i) [vi, vi+1] ≥ 0

where [, ] is the canonical Wronski bracket associated to d. We can also require
�vi = 1 in general, though in some cases this may be difficult to justify (perhaps
something like �dvi = 0 is better). In the case A = C∞[0, 1], a monotone v ∈ V n

with �vi = 1 is then an increasing curve in the Bayesian order. It is possible to
distinguish states from curves in this way as well, by calling v ∈ An a state if
dvi = 0. Properties like those in Proposition 3.3 are probably the kind one needs
to develop these notions more fully.

One thing ideas along this line seem to offer is a completely different way of
thinking about (the Bayesian) order, an implicit description of it. Instead of x � y,
we characterize events that begin with x and end at y, i.e., processes that cause a
change of state from x to y. In some cases, it may not be necessary to know x and
y, but only processes which connect them.

7. CLOSING REMARKS

Is every Wronski bracket a Lie bracket, in general? This might be a good
way to test a noncommutative definition of Wronski bracket. It may be pos-
sible to obtain more pleasing results in the noncommutative case, but in the
case we are most interested in here (the commutative one), we do not believe
that it is. It would be good to consider an algebra of operators on a Hilbert
space.

A more realistic model of the ferris wheel might assume the postdocs are
well adjusted and instead that there is a person nearby with a control panel having
buttons labeled 1, 2, 3, 4. The person, called “professor,” has the option of pressing
button i, and if he does, this results in postdoc i being immediately thrown from
the ferris wheel. Unfortunately, the present author was born without the ability to
take this model seriously, so we have assumed that the postdocs are governed by
free will.

We do not have to study maladjusted postdocs on ferris wheels of course. It
could be a ferris wheel of unhappy professors concerned that one of their favorite
postdocs is going to commit academic suicide before realizing his true potential.
But, regardless of the choice, the crucial point should always be not to bore the
reader (or the writer) to the desperate point of sleep. Those who have trouble
keeping us awake will not like this.
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